2000 character limit reached
Conceptor Debiasing of Word Representations Evaluated on WEAT (1906.05993v1)
Published 14 Jun 2019 in cs.CL
Abstract: Bias in word embeddings such as Word2Vec has been widely investigated, and many efforts made to remove such bias. We show how to use conceptors debiasing to post-process both traditional and contextualized word embeddings. Our conceptor debiasing can simultaneously remove racial and gender biases and, unlike standard debiasing methods, can make effect use of heterogeneous lists of biased words. We show that conceptor debiasing diminishes racial and gender bias of word representations as measured using the Word Embedding Association Test (WEAT) of Caliskan et al. (2017).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.