Papers
Topics
Authors
Recent
Search
2000 character limit reached

Estimating Homogeneous Data-driven BRDF Parameters from a Reflectance Map under Known Natural Lighting

Published 11 Jun 2019 in cs.GR | (1906.04777v1)

Abstract: In this paper we demonstrate robust estimation of the model parameters of a fully-linear data-driven BRDF model from a reflectance map under known natural lighting. To regularize the estimation of the model parameters, we leverage the reflectance similarities within a material class. We approximate the space of homogeneous BRDFs using a Gaussian mixture model, and assign a material class to each Gaussian in the mixture model. We formulate the estimation of the model parameters as a non-linear maximum a-posteriori optimization, and introduce a linear approximation that estimates a solution per material class from which the best solution is selected. We demonstrate the efficacy and robustness of our method using the MERL BRDF database under a variety of natural lighting conditions, and we provide a proof-of-concept real-world experiment.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.