Papers
Topics
Authors
Recent
2000 character limit reached

Gossip-based Actor-Learner Architectures for Deep Reinforcement Learning (1906.04585v2)

Published 9 Jun 2019 in cs.LG, cs.AI, cs.MA, math.OC, and stat.ML

Abstract: Multi-simulator training has contributed to the recent success of Deep Reinforcement Learning by stabilizing learning and allowing for higher training throughputs. We propose Gossip-based Actor-Learner Architectures (GALA) where several actor-learners (such as A2C agents) are organized in a peer-to-peer communication topology, and exchange information through asynchronous gossip in order to take advantage of a large number of distributed simulators. We prove that GALA agents remain within an epsilon-ball of one-another during training when using loosely coupled asynchronous communication. By reducing the amount of synchronization between agents, GALA is more computationally efficient and scalable compared to A2C, its fully-synchronous counterpart. GALA also outperforms A2C, being more robust and sample efficient. We show that we can run several loosely coupled GALA agents in parallel on a single GPU and achieve significantly higher hardware utilization and frame-rates than vanilla A2C at comparable power draws.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.