Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Few-Shot Point Cloud Region Annotation with Human in the Loop (1906.04409v1)

Published 11 Jun 2019 in cs.CV and cs.LG

Abstract: We propose a point cloud annotation framework that employs human-in-loop learning to enable the creation of large point cloud datasets with per-point annotations. Sparse labels from a human annotator are iteratively propagated to generate a full segmentation of the network by fine-tuning a pre-trained model of an allied task via a few-shot learning paradigm. We show that the proposed framework significantly reduces the amount of human interaction needed in annotating point clouds, without sacrificing on the quality of the annotations. Our experiments also suggest the suitability of the framework in annotating large datasets by noting a reduction in human interaction as the number of full annotations completed by the system increases. Finally, we demonstrate the flexibility of the framework to support multiple different annotations of the same point cloud enabling the creation of datasets with different granularities of annotation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.