2000 character limit reached
Extending Deep Learning Models for Limit Order Books to Quantile Regression (1906.04404v1)
Published 11 Jun 2019 in q-fin.TR
Abstract: We showcase how Quantile Regression (QR) can be applied to forecast financial returns using Limit Order Books (LOBs), the canonical data source of high-frequency financial time-series. We develop a deep learning architecture that simultaneously models the return quantiles for both buy and sell positions. We test our model over millions of LOB updates across multiple different instruments on the London Stock Exchange. Our results suggest that the proposed network not only delivers excellent performance but also provides improved prediction robustness by combining quantile estimates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.