Likelihood Evaluation of Jump-Diffusion Models Using Deterministic Nonlinear Filters (1906.04322v2)
Abstract: In this study, we develop a deterministic nonlinear filtering algorithm based on a high-dimensional version of Kitagawa (1987) to evaluate the likelihood function of models that allow for stochastic volatility and jumps whose arrival intensity is also stochastic. We show numerically that the deterministic filtering method is precise and much faster than the particle filter, in addition to yielding a smooth function over the parameter space. We then find the maximum likelihood estimates of various models that include stochastic volatility, jumps in the returns and variance, and also stochastic jump arrival intensity with the S&P 500 daily returns. During the Great Recession, the jump arrival intensity increases significantly and contributes to the clustering of volatility and negative returns.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.