Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Global jump filters and quasi-likelihood analysis for volatility (1806.10706v3)

Published 27 Jun 2018 in stat.ME

Abstract: We propose a new estimation scheme for estimation of the volatility parameters of a semimartingale with jumps based on a jump-detection filter. Our filter uses all of data to analyze the relative size of increments and to discriminate jumps more precisely. We construct quasi-maximum likelihood estimators and quasi-Bayesian estimators, and show limit theorems for them including $Lp$-estimates of the error and asymptotic mixed normality based on the framework of the quasi-likelihood analysis. The global jump filters do not need a restrictive condition for the distribution of the small jumps. By numerical simulation we show that our "global" method obtains better estimates of the volatility parameter than the previous "local" methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.