Papers
Topics
Authors
Recent
Search
2000 character limit reached

Clinical Concept Extraction for Document-Level Coding

Published 8 Jun 2019 in cs.CL | (1906.03380v1)

Abstract: The text of clinical notes can be a valuable source of patient information and clinical assessments. Historically, the primary approach for exploiting clinical notes has been information extraction: linking spans of text to concepts in a detailed domain ontology. However, recent work has demonstrated the potential of supervised machine learning to extract document-level codes directly from the raw text of clinical notes. We propose to bridge the gap between the two approaches with two novel syntheses: (1) treating extracted concepts as features, which are used to supplement or replace the text of the note; (2) treating extracted concepts as labels, which are used to learn a better representation of the text. Unfortunately, the resulting concepts do not yield performance gains on the document-level clinical coding task. We explore possible explanations and future research directions.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.