Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Question-Answer Hierarchies (1906.02622v2)

Published 6 Jun 2019 in cs.CL

Abstract: The process of knowledge acquisition can be viewed as a question-answer game between a student and a teacher in which the student typically starts by asking broad, open-ended questions before drilling down into specifics (Hintikka, 1981; Hakkarainen and Sintonen, 2002). This pedagogical perspective motivates a new way of representing documents. In this paper, we present SQUASH (Specificity-controlled Question-Answer Hierarchies), a novel and challenging text generation task that converts an input document into a hierarchy of question-answer pairs. Users can click on high-level questions (e.g., "Why did Frodo leave the Fellowship?") to reveal related but more specific questions (e.g., "Who did Frodo leave with?"). Using a question taxonomy loosely based on Lehnert (1978), we classify questions in existing reading comprehension datasets as either "general" or "specific". We then use these labels as input to a pipelined system centered around a conditional neural LLM. We extensively evaluate the quality of the generated QA hierarchies through crowdsourced experiments and report strong empirical results.

Citations (38)

Summary

We haven't generated a summary for this paper yet.