Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Training with Heterogeneous Data: Bridging Median- and Mean-Based Algorithms (1906.01736v2)

Published 4 Jun 2019 in cs.LG, cs.DC, math.OC, and stat.ML

Abstract: Recently, there is a growing interest in the study of median-based algorithms for distributed non-convex optimization. Two prominent such algorithms include signSGD with majority vote, an effective approach for communication reduction via 1-bit compression on the local gradients, and medianSGD, an algorithm recently proposed to ensure robustness against Byzantine workers. The convergence analyses for these algorithms critically rely on the assumption that all the distributed data are drawn iid from the same distribution. However, in applications such as Federated Learning, the data across different nodes or machines can be inherently heterogeneous, which violates such an iid assumption. This work analyzes signSGD and medianSGD in distributed settings with heterogeneous data. We show that these algorithms are non-convergent whenever there is some disparity between the expected median and mean over the local gradients. To overcome this gap, we provide a novel gradient correction mechanism that perturbs the local gradients with noise, together with a series results that provable close the gap between mean and median of the gradients. The proposed methods largely preserve nice properties of these methods, such as the low per-iteration communication complexity of signSGD, and further enjoy global convergence to stationary solutions. Our perturbation technique can be of independent interest when one wishes to estimate mean through a median estimator.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiangyi Chen (16 papers)
  2. Tiancong Chen (7 papers)
  3. Haoran Sun (65 papers)
  4. Zhiwei Steven Wu (143 papers)
  5. Mingyi Hong (172 papers)
Citations (71)

Summary

We haven't generated a summary for this paper yet.