Papers
Topics
Authors
Recent
Search
2000 character limit reached

Anomaly Detection in Images

Published 9 May 2019 in cs.CV | (1905.13147v1)

Abstract: Visual defect assessment is a form of anomaly detection. This is very relevant in finding faults such as cracks and markings in various surface inspection tasks like pavement and automotive parts. The task involves detection of deviation/divergence of anomalous samples from the normal ones. Two of the major challenges in supervised anomaly detection are the lack of labelled training data and the low availability of anomaly instances. Semi-supervised methods which learn the underlying distribution of the normal samples and then measure the deviation/divergence from the estimated model as the anomaly score have limitations in their overall ability to detect anomalies. This paper proposes the application of network-based deep transfer learning using convolutional neural networks (CNNs) for the task of anomaly detection. Single class SVMs have been used in the past with some success, however we hypothesize that deeper networks for single class classification should perform better. Results obtained on established anomaly detection benchmarks as well as on a real-world dataset, show that the proposed method clearly outperforms the existing state-of-the-art methods, by achieving a staggering average area under the receiver operating characteristic curve value of 0.99 for the tested data-sets which is an average improvement of 41% on the CIFAR10, 20% on MNIST and 16% on Cement Crack data-sets.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.