Papers
Topics
Authors
Recent
2000 character limit reached

PANDA : Perceptually Aware Neural Detection of Anomalies (2104.13702v1)

Published 28 Apr 2021 in cs.CV

Abstract: Semi-supervised methods of anomaly detection have seen substantial advancement in recent years. Of particular interest are applications of such methods to diverse, real-world anomaly detection problems where anomalous variations can vary from the visually obvious to the very subtle. In this work, we propose a novel fine-grained VAE-GAN architecture trained in a semi-supervised manner in order to detect both visually distinct and subtle anomalies. With the use of a residually connected dual-feature extractor, a fine-grained discriminator and a perceptual loss function, we are able to detect subtle, low inter-class (anomaly vs. normal) variant anomalies with greater detection capability and smaller margins of deviation in AUC value during inference compared to prior work whilst also remaining time-efficient during inference. We achieve state of-the-art anomaly detection results when compared extensively with prior semi-supervised approaches across a multitude of anomaly detection benchmark tasks including trivial leave-one out tasks (CIFAR-10 - AUPRCavg: 0.91; MNIST - AUPRCavg: 0.90) in addition to challenging real-world anomaly detection tasks (plant leaf disease - AUC: 0.776; threat item X-ray - AUC: 0.51), video frame-level anomaly detection (UCSDPed1 - AUC: 0.95) and high frequency texture with object anomalous defect detection (MVTEC - AUCavg: 0.83).

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.