Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stratospheric Aerosol Injection as a Deep Reinforcement Learning Problem

Published 17 May 2019 in cs.LG, physics.ao-ph, and stat.ML | (1905.07366v1)

Abstract: As global greenhouse gas emissions continue to rise, the use of stratospheric aerosol injection (SAI), a form of solar geoengineering, is increasingly considered in order to artificially mitigate climate change effects. However, initial research in simulation suggests that naive SAI can have catastrophic regional consequences, which may induce serious geostrategic conflicts. Current geo-engineering research treats SAI control in low-dimensional approximation only. We suggest treating SAI as a high-dimensional control problem, with policies trained according to a context-sensitive reward function within the Deep Reinforcement Learning (DRL) paradigm. In order to facilitate training in simulation, we suggest to emulate HadCM3, a widely used General Circulation Model, using deep learning techniques. We believe this is the first application of DRL to the climate sciences.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 6 tweets with 492 likes about this paper.