Papers
Topics
Authors
Recent
Search
2000 character limit reached

Superposition and higher-order spacing ratios in random matrix theory with application to complex systems

Published 6 May 2019 in cond-mat.stat-mech, cond-mat.dis-nn, cs.NA, math.NA, physics.data-an, and quant-ph | (1905.02585v3)

Abstract: The statistical properties of spectra of quantum systems within the framework of random matrix theory is widely used in many areas of physics. These properties are affected, if two or more sets of spectra are superposed, resulting from the discrete symmetries present in the system. Superposition of spectra of $m$ such circular orthogonal, unitary and symplectic ensembles are studied numerically using higher-order spacing ratios. For given $m$ and the Dyson index $\beta$, the modified index $\beta'$ is tabulated whose nearest neighbor spacing distribution is identical to that of $k$-th order spacing ratio. For the case of $m=2$ ($m=3$) in COE (CUE) a scaling relation between $\beta'$ and $k$ is given. For COE, it is conjectured that for $k=m+1$ ($m\geq2$) and $k=m-3$-th ($m\geq5$) order spacing ratio distribution the $\beta'$ is $m+2$ and $m-4$ respectively. Whereas in the case of CSE, for $k=m+1$ ($m\geq2$) and $k=m-1$-th ($m\geq3$) the $\beta'$ is $2m+3$ and $2(m-2)$ respectively. We also conjecture that for given $m$ ($k$) and $\beta$, the sequence of $\beta'$ as a function of $k$ ($m$) is unique. Strong numerical evidence in support of these results is presented. These results are tested on complex systems like the measured nuclear resonances, quantum chaotic kicked top and spin chains.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.