Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

A Hierarchical Decoding Model For Spoken Language Understanding From Unaligned Data (1904.04498v1)

Published 9 Apr 2019 in cs.CL

Abstract: Spoken language understanding (SLU) systems can be trained on two types of labelled data: aligned or unaligned. Unaligned data do not require word by word annotation and is easier to be obtained. In the paper, we focus on spoken language understanding from unaligned data whose annotation is a set of act-slot-value triples. Previous works usually focus on improve slot-value pair prediction and estimate dialogue act types separately, which ignores the hierarchical structure of the act-slot-value triples. Here, we propose a novel hierarchical decoding model which dynamically parses act, slot and value in a structured way and employs pointer network to handle out-of-vocabulary (OOV) values. Experiments on DSTC2 dataset, a benchmark unaligned dataset, show that the proposed model not only outperforms previous state-of-the-art model, but also can be generalized effectively and efficiently to unseen act-slot type pairs and OOV values.

Citations (16)

Summary

We haven't generated a summary for this paper yet.