Papers
Topics
Authors
Recent
Search
2000 character limit reached

Overlap matrix concentration in optimal Bayesian inference

Published 4 Apr 2019 in cs.IT, cond-mat.dis-nn, math.IT, and math.PR | (1904.02808v2)

Abstract: We consider models of Bayesian inference of signals with vectorial components of finite dimensionality. We show that, under a proper perturbation, these models are replica symmetric in the sense that the overlap matrix concentrates. The overlap matrix is the order parameter in these models and is directly related to error metrics such as minimum mean-square errors. Our proof is valid in the optimal Bayesian inference setting. This means that it relies on the assumption that the model and all its hyper-parameters are known so that the posterior distribution can be written exactly. Examples of important problems in high-dimensional inference and learning to which our results apply are low-rank tensor factorization, the committee machine neural network with a finite number of hidden neurons in the teacher-student scenario, or multi-layer versions of the generalized linear model.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.