Estimation of a regular conditional functional by conditional U-statistics regression (1903.10914v1)
Abstract: U-statistics constitute a large class of estimators, generalizing the empirical mean of a random variable $X$ to sums over every $k$-tuple of distinct observations of $X$. They may be used to estimate a regular functional $\theta(P_{X})$ of the law of $X$. When a vector of covariates $Z$ is available, a conditional U-statistic may describe the effect of $z$ on the conditional law of $X$ given $Z=z$, by estimating a regular conditional functional $\theta(P_{X|Z=\cdot})$. We prove concentration inequalities for conditional U-statistics. Assuming a parametric model of the conditional functional of interest, we propose a regression-type estimator based on conditional U-statistics. Its theoretical properties are derived, first in a non-asymptotic framework and then in two different asymptotic regimes. Some examples are given to illustrate our methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.