Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Potential Conditional Mutual Information: Estimators, Properties and Applications (1710.05012v1)

Published 13 Oct 2017 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: The conditional mutual information I(X;Y|Z) measures the average information that X and Y contain about each other given Z. This is an important primitive in many learning problems including conditional independence testing, graphical model inference, causal strength estimation and time-series problems. In several applications, it is desirable to have a functional purely of the conditional distribution p_{Y|X,Z} rather than of the joint distribution p_{X,Y,Z}. We define the potential conditional mutual information as the conditional mutual information calculated with a modified joint distribution p_{Y|X,Z} q_{X,Z}, where q_{X,Z} is a potential distribution, fixed airport. We develop K nearest neighbor based estimators for this functional, employing importance sampling, and a coupling trick, and prove the finite k consistency of such an estimator. We demonstrate that the estimator has excellent practical performance and show an application in dynamical system inference.

Citations (10)

Summary

We haven't generated a summary for this paper yet.