Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rectangular Bounding Process (1903.03906v1)

Published 10 Mar 2019 in stat.ML, cs.AI, cs.LG, and math.PR

Abstract: Stochastic partition models divide a multi-dimensional space into a number of rectangular regions, such that the data within each region exhibit certain types of homogeneity. Due to the nature of their partition strategy, existing partition models may create many unnecessary divisions in sparse regions when trying to describe data in dense regions. To avoid this problem we introduce a new parsimonious partition model -- the Rectangular Bounding Process (RBP) -- to efficiently partition multi-dimensional spaces, by employing a bounding strategy to enclose data points within rectangular bounding boxes. Unlike existing approaches, the RBP possesses several attractive theoretical properties that make it a powerful nonparametric partition prior on a hypercube. In particular, the RBP is self-consistent and as such can be directly extended from a finite hypercube to infinite (unbounded) space. We apply the RBP to regression trees and relational models as a flexible partition prior. The experimental results validate the merit of the RBP {in rich yet parsimonious expressiveness} compared to the state-of-the-art methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.