Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Stochastic Patching Process (1605.06886v2)

Published 23 May 2016 in cs.AI and stat.ML

Abstract: Stochastic partition models tailor a product space into a number of rectangular regions such that the data within each region exhibit certain types of homogeneity. Due to constraints of partition strategy, existing models may cause unnecessary dissections in sparse regions when fitting data in dense regions. To alleviate this limitation, we propose a parsimonious partition model, named Stochastic Patching Process (SPP), to deal with multi-dimensional arrays. SPP adopts an "enclosing" strategy to attach rectangular patches to dense regions. SPP is self-consistent such that it can be extended to infinite arrays. We apply SPP to relational modeling and the experimental results validate its merit compared to the state-of-the-arts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.