Papers
Topics
Authors
Recent
2000 character limit reached

Attribute Acquisition in Ontology based on Representation Learning of Hierarchical Classes and Attributes (1903.03282v1)

Published 8 Mar 2019 in cs.AI and cs.CL

Abstract: Attribute acquisition for classes is a key step in ontology construction, which is often achieved by community members manually. This paper investigates an attention-based automatic paradigm called TransATT for attribute acquisition, by learning the representation of hierarchical classes and attributes in Chinese ontology. The attributes of an entity can be acquired by merely inspecting its classes, because the entity can be regard as the instance of its classes and inherit their attributes. For explicitly describing of the class of an entity unambiguously, we propose class-path to represent the hierarchical classes in ontology, instead of the terminal class word of the hypernym-hyponym relation (i.e., is-a relation) based hierarchy. The high performance of TransATT on attribute acquisition indicates the promising ability of the learned representation of class-paths and attributes. Moreover, we construct a dataset named \textbf{BigCilin11k}. To the best of our knowledge, this is the first Chinese dataset with abundant hierarchical classes and entities with attributes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.