Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How to Transfer? Zero-Shot Object Recognition via Hierarchical Transfer of Semantic Attributes (1604.00326v1)

Published 1 Apr 2016 in cs.CV

Abstract: Attribute based knowledge transfer has proven very successful in visual object analysis and learning previously unseen classes. However, the common approach learns and transfers attributes without taking into consideration the embedded structure between the categories in the source set. Such information provides important cues on the intra-attribute variations. We propose to capture these variations in a hierarchical model that expands the knowledge source with additional abstraction levels of attributes. We also provide a novel transfer approach that can choose the appropriate attributes to be shared with an unseen class. We evaluate our approach on three public datasets: aPascal, Animals with Attributes and CUB-200-2011 Birds. The experiments demonstrate the effectiveness of our model with significant improvement over state-of-the-art.

Citations (59)

Summary

We haven't generated a summary for this paper yet.