Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fault Diagnosis Method Based on Scaling Law for On-line Refrigerant Leak Detection (1902.09427v1)

Published 22 Feb 2019 in eess.SP, cs.LG, cs.SY, and stat.ML

Abstract: Early fault detection using instrumented sensor data is one of the promising application areas of machine learning in industrial facilities. However, it is difficult to improve the generalization performance of the trained fault-detection model because of the complex system configuration in the target diagnostic system and insufficient fault data. It is not trivial to apply the trained model to other systems. Here we propose a fault diagnosis method for refrigerant leak detection considering the physical modeling and control mechanism of an air-conditioning system. We derive a useful scaling law related to refrigerant leak. If the control mechanism is the same, the model can be applied to other air-conditioning systems irrespective of the system configuration. Small-scale off-line fault test data obtained in a laboratory are applied to estimate the scaling exponent. We evaluate the proposed scaling law by using real-world data. Based on a statistical hypothesis test of the interaction between two groups, we show that the scaling exponents of different air-conditioning systems are equivalent. In addition, we estimated the time series of the degree of leakage of real process data based on the scaling law and confirmed that the proposed method is promising for early leak detection through comparison with assessment by experts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.