Papers
Topics
Authors
Recent
2000 character limit reached

The Frobenius and factor universality problems of the Kleene star of a finite set of words

Published 18 Feb 2019 in cs.FL | (1902.06702v5)

Abstract: We solve open problems concerning the Kleene star $L*$ of a finite set $L$ of words over an alphabet $\Sigma$. The \emph{Frobenius monoid} problem is the question for a given finite set of words $L$, whether the language $L*$ is cofinite. We show that it is PSPACE-complete. We also exhibit an infinite family of sets $L$ such that the length of the longest words not in $L*$ (when $L*$ is cofinite) is exponential in the length of the longest words in $L$ and subexponential in the sum of the lengths of words in $L$. The \emph{factor universality} problem is the question for a given finite set of words $L$, whether every word over $\Sigma$ is a factor (substring) of some word from $L*$. We show that it is also PSPACE-complete. Besides that, we exhibit an infinite family of sets $L$ such that the length of the shortest words not being a factor of any word in $L*$ is exponential in the length of the longest words in $L$ and subexponential in the sum of the lengths of words in $L$. This essentially settles in the negative the longstanding Restivo's conjecture (1981) and its weak variations. All our solutions base on one shared construction, and as an auxiliary general tool, we introduce the concept of \emph{set rewriting systems}. Finally, we complement the results with upper bounds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.