Papers
Topics
Authors
Recent
2000 character limit reached

Non-symplectic involutions on manifolds of $K3^{[n]}$-type (1902.05397v1)

Published 14 Feb 2019 in math.AG

Abstract: We study irreducible holomorphic symplectic manifolds deformation equivalent to Hilbert schemes of points on a $K3$ surface and admitting a non-symplectic involution. We classify the possible discriminant forms of the invariant and anti-invariant lattice for the action of the involution on cohomology, and explicitly describe the lattices in the cases where the invariant has small rank. We also give a modular description of all $d$-dimensional families of manifolds of $K3{[n]}$-type with a non-symplectic involution for $d\geq 19$ and $n\leq 5$, and provide examples arising as moduli spaces of twisted sheaves on a $K3$ surface.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.