Papers
Topics
Authors
Recent
2000 character limit reached

Quadratic differential equations : partial Gelfand-Shilov smoothing effect and null-controllability (1902.04459v3)

Published 12 Feb 2019 in math.AP

Abstract: We study the partial Gelfand-Shilov regularizing effect and the exponential decay for the solutions to evolution equations associated to a class of accretive non-selfadjoint quadratic operators, which fail to be globally hypoelliptic on the whole phase space. By taking advantage of the associated Gevrey regularizing effects, we study the null-controllability of parabolic equations posed on the whole Euclidean space associated to this class of possibly non-globally hypoelliptic quadratic operators. We prove that these parabolic equations are null-controllable in any positive time from thick control subsets. This thickness property is known to be a necessary and sufficient condition for the null-controllability of the heat equation posed on the whole Euclidean space. Our result shows that this geometric condition turns out to be a sufficient one for the null-controllability of a large class of quadratic differential operators.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.