Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

OrthographicNet: A Deep Transfer Learning Approach for 3D Object Recognition in Open-Ended Domains (1902.03057v3)

Published 8 Feb 2019 in cs.RO and cs.CV

Abstract: Nowadays, service robots are appearing more and more in our daily life. For this type of robot, open-ended object category learning and recognition is necessary since no matter how extensive the training data used for batch learning, the robot might be faced with a new object when operating in a real-world environment. In this work, we present OrthographicNet, a Convolutional Neural Network (CNN)-based model, for 3D object recognition in open-ended domains. In particular, OrthographicNet generates a global rotation- and scale-invariant representation for a given 3D object, enabling robots to recognize the same or similar objects seen from different perspectives. Experimental results show that our approach yields significant improvements over the previous state-of-the-art approaches concerning object recognition performance and scalability in open-ended scenarios. Moreover, OrthographicNet demonstrates the capability of learning new categories from very few examples on-site. Regarding real-time performance, three real-world demonstrations validate the promising performance of the proposed architecture.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.