Papers
Topics
Authors
Recent
2000 character limit reached

Mean Field Limit of the Learning Dynamics of Multilayer Neural Networks (1902.02880v1)

Published 7 Feb 2019 in cs.LG, cond-mat.dis-nn, cond-mat.stat-mech, and stat.ML

Abstract: Can multilayer neural networks -- typically constructed as highly complex structures with many nonlinearly activated neurons across layers -- behave in a non-trivial way that yet simplifies away a major part of their complexities? In this work, we uncover a phenomenon in which the behavior of these complex networks -- under suitable scalings and stochastic gradient descent dynamics -- becomes independent of the number of neurons as this number grows sufficiently large. We develop a formalism in which this many-neurons limiting behavior is captured by a set of equations, thereby exposing a previously unknown operating regime of these networks. While the current pursuit is mathematically non-rigorous, it is complemented with several experiments that validate the existence of this behavior.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.