Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Efficient Bayesian credible-region certification for quantum-state tomography (1902.02602v2)

Published 7 Feb 2019 in quant-ph

Abstract: Standard Bayesian credible-region theory for constructing an error region on the unique estimator of an unknown state in general quantum-state tomography to calculate its size and credibility relies on heavy Monte~Carlo sampling of the state space followed by sample rejection. This conventional method typically gives negligible yield for very small error regions originating from large datasets. We propose an operational reformulated theory to compute both size and credibility from region-average quantities that in principle convey information about behavior of these two properties as the credible-region changes. We next suggest the accelerated hit-and-run Monte~Carlo sampling, customized to the construction of Bayesian error-regions, to efficiently compute region-average quantities, and provide its complexity estimates for quantum states. Finally by understanding size as the region-average distance between two states in the region (measured for instance with either the Hilbert-Schmidt, trace-class or Bures distance), we derive approximation formulas to analytically estimate both distance-induced size and credibility under the pseudo-Bloch parametrization without resorting to any Monte~Carlo computation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube