Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Exchangeable Generative Models with Flow Scans (1902.01967v3)

Published 5 Feb 2019 in cs.LG and stat.ML

Abstract: In this work, we develop a new approach to generative density estimation for exchangeable, non-i.i.d. data. The proposed framework, FlowScan, combines invertible flow transformations with a sorted scan to flexibly model the data while preserving exchangeability. Unlike most existing methods, FlowScan exploits the intradependencies within sets to learn both global and local structure. FlowScan represents the first approach that is able to apply sequential methods to exchangeable density estimation without resorting to averaging over all possible permutations. We achieve new state-of-the-art performance on point cloud and image set modeling.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.