Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Riemannian optimization with a preconditioning scheme on the generalized Stiefel manifold (1902.01635v4)

Published 5 Feb 2019 in math.NA, cs.DS, cs.LG, cs.NA, and math.OC

Abstract: Optimization problems on the generalized Stiefel manifold (and products of it) are prevalent across science and engineering. For example, in computational science they arise in symmetric (generalized) eigenvalue problems, in nonlinear eigenvalue problems, and in electronic structures computations, to name a few problems. In statistics and machine learning, they arise, for example, in various dimensionality reduction techniques such as canonical correlation analysis. In deep learning, regularization and improved stability can be obtained by constraining some layers to have parameter matrices that belong to the Stiefel manifold. Solving problems on the generalized Stiefel manifold can be approached via the tools of Riemannian optimization. However, using the standard geometric components for the generalized Stiefel manifold has two possible shortcomings: computing some of the geometric components can be too expensive and convergence can be rather slow in certain cases. Both shortcomings can be addressed using a technique called Riemannian preconditioning, which amounts to using geometric components derived by a precoditioner that defines a Riemannian metric on the constraint manifold. In this paper we develop the geometric components required to perform Riemannian optimization on the generalized Stiefel manifold equipped with a non-standard metric, and illustrate theoretically and numerically the use of those components and the effect of Riemannian preconditioning for solving optimization problems on the generalized Stiefel manifold.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube