2000 character limit reached
Confusion matrices and rough set data analysis
Published 4 Feb 2019 in cs.LG and stat.ML | (1902.01487v1)
Abstract: A widespread approach in machine learning to evaluate the quality of a classifier is to cross -- classify predicted and actual decision classes in a confusion matrix, also called error matrix. A classification tool which does not assume distributional parameters but only information contained in the data is based on the rough set data model which assumes that knowledge is given only up to a certain granularity. Using this assumption and the technique of confusion matrices, we define various indices and classifiers based on rough confusion matrices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.