Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifier uncertainty: evidence, potential impact, and probabilistic treatment (2006.11105v1)

Published 19 Jun 2020 in stat.ML and cs.LG

Abstract: Classifiers are often tested on relatively small data sets, which should lead to uncertain performance metrics. Nevertheless, these metrics are usually taken at face value. We present an approach to quantify the uncertainty of classification performance metrics, based on a probability model of the confusion matrix. Application of our approach to classifiers from the scientific literature and a classification competition shows that uncertainties can be surprisingly large and limit performance evaluation. In fact, some published classifiers are likely to be misleading. The application of our approach is simple and requires only the confusion matrix. It is agnostic of the underlying classifier. Our method can also be used for the estimation of sample sizes that achieve a desired precision of a performance metric.

Citations (18)

Summary

We haven't generated a summary for this paper yet.