Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural Language Processing, Sentiment Analysis and Clinical Analytics (1902.00679v1)

Published 2 Feb 2019 in cs.CL

Abstract: Recent advances in Big Data has prompted health care practitioners to utilize the data available on social media to discern sentiment and emotions expression. Health Informatics and Clinical Analytics depend heavily on information gathered from diverse sources. Traditionally, a healthcare practitioner will ask a patient to fill out a questionnaire that will form the basis of diagnosing the medical condition. However, medical practitioners have access to many sources of data including the patients writings on various media. NLP allows researchers to gather such data and analyze it to glean the underlying meaning of such writings. The field of sentiment analysis (applied to many other domains) depend heavily on techniques utilized by NLP. This work will look into various prevalent theories underlying the NLP field and how they can be leveraged to gather users sentiments on social media. Such sentiments can be culled over a period of time thus minimizing the errors introduced by data input and other stressors. Furthermore, we look at some applications of sentiment analysis and application of NLP to mental health. The reader will also learn about the NLTK toolkit that implements various NLP theories and how they can make the data scavenging process a lot easier.

Citations (86)

Summary

We haven't generated a summary for this paper yet.