Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient estimation of AUC in a sliding window (1902.00632v1)

Published 2 Feb 2019 in cs.LG and stat.ML

Abstract: In many applications, monitoring area under the ROC curve (AUC) in a sliding window over a data stream is a natural way of detecting changes in the system. The drawback is that computing AUC in a sliding window is expensive, especially if the window size is large and the data flow is significant. In this paper we propose a scheme for maintaining an approximate AUC in a sliding window of length $k$. More specifically, we propose an algorithm that, given $\epsilon$, estimates AUC within $\epsilon / 2$, and can maintain this estimate in $O((\log k) / \epsilon)$ time, per update, as the window slides. This provides a speed-up over the exact computation of AUC, which requires $O(k)$ time, per update. The speed-up becomes more significant as the size of the window increases. Our estimate is based on grouping the data points together, and using these groups to calculate AUC. The grouping is designed carefully such that ($i$) the groups are small enough, so that the error stays small, ($ii$) the number of groups is small, so that enumerating them is not expensive, and ($iii$) the definition is flexible enough so that we can maintain the groups efficiently. Our experimental evaluation demonstrates that the average approximation error in practice is much smaller than the approximation guarantee $\epsilon / 2$, and that we can achieve significant speed-ups with only a modest sacrifice in accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube