Papers
Topics
Authors
Recent
2000 character limit reached

Determining the Dimension and Structure of the Subspace Correlated Across Multiple Data Sets (1901.11366v1)

Published 31 Jan 2019 in cs.IT, math.IT, and stat.ME

Abstract: Detecting the components common or correlated across multiple data sets is challenging due to a large number of possible correlation structures among the components. Even more challenging is to determine the precise structure of these correlations. Traditional work has focused on determining only the model order, i.e., the dimension of the correlated subspace, a number that depends on how the model-order problem is defined. Moreover, identifying the model order is often not enough to understand the relationship among the components in different data sets. We aim at solving the complete modelselection problem, i.e., determining which components are correlated across which data sets. We prove that the eigenvalues and eigenvectors of the normalized covariance matrix of the composite data vector, under certain conditions, completely characterize the underlying correlation structure. We use these results to solve the model-selection problem by employing bootstrap-based hypothesis testing.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.