Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Feudal Multi-Agent Hierarchies for Cooperative Reinforcement Learning (1901.08492v1)

Published 24 Jan 2019 in cs.MA, cs.AI, and cs.LG

Abstract: We investigate how reinforcement learning agents can learn to cooperate. Drawing inspiration from human societies, in which successful coordination of many individuals is often facilitated by hierarchical organisation, we introduce Feudal Multi-agent Hierarchies (FMH). In this framework, a 'manager' agent, which is tasked with maximising the environmentally-determined reward function, learns to communicate subgoals to multiple, simultaneously-operating, 'worker' agents. Workers, which are rewarded for achieving managerial subgoals, take concurrent actions in the world. We outline the structure of FMH and demonstrate its potential for decentralised learning and control. We find that, given an adequate set of subgoals from which to choose, FMH performs, and particularly scales, substantially better than cooperative approaches that use a shared reward function.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.