Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Incentivize Other Learning Agents (2006.06051v2)

Published 10 Jun 2020 in cs.LG, cs.GT, cs.MA, and stat.ML

Abstract: The challenge of developing powerful and general Reinforcement Learning (RL) agents has received increasing attention in recent years. Much of this effort has focused on the single-agent setting, in which an agent maximizes a predefined extrinsic reward function. However, a long-term question inevitably arises: how will such independent agents cooperate when they are continually learning and acting in a shared multi-agent environment? Observing that humans often provide incentives to influence others' behavior, we propose to equip each RL agent in a multi-agent environment with the ability to give rewards directly to other agents, using a learned incentive function. Each agent learns its own incentive function by explicitly accounting for its impact on the learning of recipients and, through them, the impact on its own extrinsic objective. We demonstrate in experiments that such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games, often by finding a near-optimal division of labor. Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jiachen Yang (21 papers)
  2. Ang Li (472 papers)
  3. Mehrdad Farajtabar (56 papers)
  4. Peter Sunehag (21 papers)
  5. Edward Hughes (40 papers)
  6. Hongyuan Zha (136 papers)
Citations (60)