Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Nesterov gradient methods over arbitrary graphs (1901.06995v1)

Published 21 Jan 2019 in cs.LG, cs.DC, math.OC, and stat.ML

Abstract: In this letter, we introduce a distributed Nesterov method, termed as $\mathcal{ABN}$, that does not require doubly-stochastic weight matrices. Instead, the implementation is based on a simultaneous application of both row- and column-stochastic weights that makes this method applicable to arbitrary (strongly-connected) graphs. Since constructing column-stochastic weights needs additional information (the number of outgoing neighbors at each agent), not available in certain communication protocols, we derive a variation, termed as FROZEN, that only requires row-stochastic weights but at the expense of additional iterations for eigenvector learning. We numerically study these algorithms for various objective functions and network parameters and show that the proposed distributed Nesterov methods achieve acceleration compared to the current state-of-the-art methods for distributed optimization.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.