Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed stochastic optimization with gradient tracking over strongly-connected networks (1903.07266v2)

Published 18 Mar 2019 in cs.LG, cs.DC, cs.MA, cs.SY, and stat.ML

Abstract: In this paper, we study distributed stochastic optimization to minimize a sum of smooth and strongly-convex local cost functions over a network of agents, communicating over a strongly-connected graph. Assuming that each agent has access to a stochastic first-order oracle ($\mathcal{SFO}$), we propose a novel distributed method, called $\mathcal{S}$-$\mathcal{AB}$, where each agent uses an auxiliary variable to asymptotically track the gradient of the global cost in expectation. The $\mathcal{S}$-$\mathcal{AB}$ algorithm employs row- and column-stochastic weights simultaneously to ensure both consensus and optimality. Since doubly-stochastic weights are not used, $\mathcal{S}$-$\mathcal{AB}$ is applicable to arbitrary strongly-connected graphs. We show that under a sufficiently small constant step-size, $\mathcal{S}$-$\mathcal{AB}$ converges linearly (in expected mean-square sense) to a neighborhood of the global minimizer. We present numerical simulations based on real-world data sets to illustrate the theoretical results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ran Xin (25 papers)
  2. Anit Kumar Sahu (35 papers)
  3. Usman A. Khan (56 papers)
  4. Soummya Kar (147 papers)
Citations (108)

Summary

We haven't generated a summary for this paper yet.