Self-supervised Anomaly Detection for Narrowband SETI (1901.04636v1)
Abstract: The Search for Extra-terrestrial Intelligence (SETI) aims to find technological signals of extra-solar origin. Radio frequency SETI is characterized by large unlabeled datasets and complex interference environment. The infinite possibilities of potential signal types require generalizable signal processing techniques with little human supervision. We present a generative model of self-supervised deep learning that can be used for anomaly detection and spatial filtering. We develop and evaluate our approach on spectrograms containing narrowband signals collected by Breakthrough Listen at the Green Bank telescope. The proposed approach is not meant to replace current narrowband searches but to demonstrate the potential to generalize to other signal types.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.