Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of simulated radio signals using Wide Residual Networks for use in the search for extra-terrestrial intelligence (1803.08624v1)

Published 23 Mar 2018 in cs.LG, astro-ph.IM, and cs.CV

Abstract: We describe a new approach and algorithm for the detection of artificial signals and their classification in the search for extraterrestrial intelligence (SETI). The characteristics of radio signals observed during SETI research are often most apparent when those signals are represented as spectrograms. Additionally, many observed signals tend to share the same characteristics, allowing for sorting of the signals into different classes. For this work, complex-valued time-series data were simulated to produce a corpus of 140,000 signals from seven different signal classes. A wide residual neural network was then trained to classify these signal types using the gray-scale 2D spectrogram representation of those signals. An average $F_1$ score of 95.11\% was attained when tested on previously unobserved simulated signals. We also report on the performance of the model across a range of signal amplitudes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.