Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Symbolic Regression in Materials Science (1901.04136v2)

Published 14 Jan 2019 in cond-mat.mtrl-sci and physics.comp-ph

Abstract: We showcase the potential of symbolic regression as an analytic method for use in materials research. First, we briefly describe the current state-of-the-art method, genetic programming-based symbolic regression (GPSR), and recent advances in symbolic regression techniques. Next, we discuss industrial applications of symbolic regression and its potential applications in materials science. We then present two GPSR use-cases: formulating a transformation kinetics law and showing the learning scheme discovers the well-known Johnson-Mehl-Avrami-Kolmogorov (JMAK) form, and learning the Landau free energy functional form for the displacive tilt transition in perovskite LaNiO$_3$. Finally, we propose that symbolic regression techniques should be considered by materials scientists as an alternative to other machine-learning-based regression models for learning from data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.