Papers
Topics
Authors
Recent
2000 character limit reached

On Hom-Lie antialgebra

Published 10 Jan 2019 in math.RA | (1901.03087v4)

Abstract: In this paper, we introduced the notion of Hom-Lie antialgebras. The representations and cohomology theory of Hom-Lie antialgebras are investigated. We prove that the equivalent classes of abelian extensions of Hom-Lie antialgebras are in one-to-one correspondence to elements of the second cohomology group. We also prove that 1-parameter infinitesimal deformation of a Hom-Lie antialgebra are characterized by 2-cocycles of this Hom-Lie antialgebra with adjoint representation in itself. The notion of Nijenhuis operators of Hom-Lie antialgebra is introduced to describe trivial deformations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.