Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Adaptive Weighted Deep Forest Classifier (1901.01334v1)

Published 4 Jan 2019 in stat.ML and cs.LG

Abstract: A modification of the confidence screening mechanism based on adaptive weighing of every training instance at each cascade level of the Deep Forest is proposed. The idea underlying the modification is very simple and stems from the confidence screening mechanism idea proposed by Pang et al. to simplify the Deep Forest classifier by means of updating the training set at each level in accordance with the classification accuracy of every training instance. However, if the confidence screening mechanism just removes instances from training and testing processes, then the proposed modification is more flexible and assigns weights by taking into account the classification accuracy. The modification is similar to the AdaBoost to some extent. Numerical experiments illustrate good performance of the proposed modification in comparison with the original Deep Forest proposed by Zhou and Feng.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.