Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The CORAL+ Algorithm for Unsupervised Domain Adaptation of PLDA (1812.10260v2)

Published 26 Dec 2018 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: State-of-the-art speaker recognition systems comprise an x-vector (or i-vector) speaker embedding front-end followed by a probabilistic linear discriminant analysis (PLDA) backend. The effectiveness of these components relies on the availability of a large collection of labeled training data. In practice, it is common that the domains (e.g., language, demographic) in which the system are deployed differs from that we trained the system. To close the gap due to the domain mismatch, we propose an unsupervised PLDA adaptation algorithm to learn from a small amount of unlabeled in-domain data. The proposed method was inspired by a prior work on feature-based domain adaptation technique known as the correlation alignment (CORAL). We refer to the model-based adaptation technique proposed in this paper as CORAL+. The efficacy of the proposed technique is experimentally validated on the recent NIST 2016 and 2018 Speaker Recognition Evaluation (SRE'16, SRE'18) datasets.

Citations (66)

Summary

We haven't generated a summary for this paper yet.