Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The CORAL++ Algorithm for Unsupervised Domain Adaptation of Speaker Recogntion (2202.01092v1)

Published 2 Feb 2022 in eess.AS and cs.SD

Abstract: State-of-the-art speaker recognition systems are trained with a large amount of human-labeled training data set. Such a training set is usually composed of various data sources to enhance the modeling capability of models. However, in practical deployment, unseen condition is almost inevitable. Domain mismatch is a common problem in real-life applications due to the statistical difference between the training and testing data sets. To alleviate the degradation caused by domain mismatch, we propose a new feature-based unsupervised domain adaptation algorithm. The algorithm we propose is a further optimization based on the well-known CORrelation ALignment (CORAL), so we call it CORAL++. On the NIST 2019 Speaker Recognition Evaluation (SRE19), we use SRE18 CTS set as the development set to verify the effectiveness of CORAL++. With the typical x-vector/PLDA setup, the CORAL++ outperforms the CORAL by 9.40% relatively on EER.

Citations (17)

Summary

We haven't generated a summary for this paper yet.