Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Generalized Framework for Domain Adaptation of PLDA in Speaker Recognition (2008.08815v1)

Published 20 Aug 2020 in eess.AS and cs.SD

Abstract: This paper proposes a generalized framework for domain adaptation of Probabilistic Linear Discriminant Analysis (PLDA) in speaker recognition. It not only includes several existing supervised and unsupervised domain adaptation methods but also makes possible more flexible usage of available data in different domains. In particular, we introduce here the two new techniques described below. (1) Correlation-alignment-based interpolation and (2) covariance regularization. The proposed correlation-alignment-based interpolation method decreases minCprimary up to 30.5% as compared with that from an out-of-domain PLDA model before adaptation, and minCprimary is also 5.5% lower than with a conventional linear interpolation method with optimal interpolation weights. Further, the proposed regularization technique ensures robustness in interpolations w.r.t. varying interpolation weights, which in practice is essential.

Citations (13)

Summary

We haven't generated a summary for this paper yet.