Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Adaptation of SPLDA (1511.07421v1)

Published 20 Nov 2015 in stat.ML

Abstract: State-of-the-art speaker recognition relays on models that need a large amount of training data. This models are successful in tasks like NIST SRE because there is sufficient data available. However, in real applications, we usually do not have so much data and, in many cases, the speaker labels are unknown. We present a method to adapt a PLDA model from a domain with a large amount of labeled data to another with unlabeled data. We describe a generative model that produces both sets of data where the unknown labels are modeled like latent variables. We used variational Bayes to estimate the hidden variables. Here, we derive the equations for this model. This model has been used in the papers: "UNSUPERVISED ADAPTATION OF PLDA BY USING VARIATIONAL BAYES METHODS" publised at ICASSP 2014, "Unsupervised Training of PLDA with Variational Bayes" published at Iberspeech 2014, and "VARIATIONAL BAYESIAN PLDA FOR SPEAKER DIARIZATION IN THE MGB CHALLENGE" published at ASRU 2015.

Citations (3)

Summary

We haven't generated a summary for this paper yet.