Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a Disentangled Embedding for Monocular 3D Shape Retrieval and Pose Estimation (1812.09899v2)

Published 24 Dec 2018 in cs.CV

Abstract: We propose a novel approach to jointly perform 3D shape retrieval and pose estimation from monocular images.In order to make the method robust to real-world image variations, e.g. complex textures and backgrounds, we learn an embedding space from 3D data that only includes the relevant information, namely the shape and pose. Our approach explicitly disentangles a shape vector and a pose vector, which alleviates both pose bias for 3D shape retrieval and categorical bias for pose estimation. We then train a CNN to map the images to this embedding space, and then retrieve the closest 3D shape from the database and estimate the 6D pose of the object. Our method achieves 10.3 median error for pose estimation and 0.592 top-1-accuracy for category agnostic 3D object retrieval on the Pascal3D+ dataset, outperforming the previous state-of-the-art methods on both tasks.

Citations (9)

Summary

We haven't generated a summary for this paper yet.